.131x^2=8/10x

Simple and best practice solution for .131x^2=8/10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .131x^2=8/10x equation:



.131x^2=8/10x
We move all terms to the left:
.131x^2-(8/10x)=0
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
.131x^2-(+8/10x)=0
We get rid of parentheses
.131x^2-8/10x=0
We multiply all the terms by the denominator
(.131x^2)*10x-8=0
We multiply parentheses
10x^2-8=0
a = 10; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·10·(-8)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*10}=\frac{0-8\sqrt{5}}{20} =-\frac{8\sqrt{5}}{20} =-\frac{2\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*10}=\frac{0+8\sqrt{5}}{20} =\frac{8\sqrt{5}}{20} =\frac{2\sqrt{5}}{5} $

See similar equations:

| 10.58+y=19.58 | | 3n+2-n=-18 | | 6x+x=105 | | 54-2v=v+21 | | y=-1/5-4 | | 21-5x=19 | | 108=12n-4(-5n+7) | | 2x^2+13x−7=0 | | 26x+33=13 | | 2x-12=5x-4 | | 1-6x=13-3x | | 17/15=11/28k | | 7x^2-7=-124 | | d/9+17=19 | | x*125=500 | | 25x+40=13-x+7 | | 6(y+7)=30 | | x125=500 | | -5x+19=x^2+1 | | x55+x70=500 | | 28=-1k/2k | | 5c+13=18 | | 6c-12-4=2c+8 | | 6x-10=2((X+7) | | x55-500=x70 | | 5w(2w-1)=-6w+3 | | x55+500=x70 | | 15t-15=15t+14 | | 18n=12n+24 | | 2x+125+x+165=38 | | 96/(x+7)=12 | | -4/y=6 |

Equations solver categories